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Abstract

The direct Fourier transform method is a straightforward solution with high accuracy for reconstructing magnetic resonance (MR)
images from nonuniformly sampled k-space data, given that the optimal density compensation function is selected and the underlying
magnetic field is sufficiently uniform. The computation however is very time-consuming, making it impractical especially for large-size
images. In this paper, the least squares quantization table (LSQT) method is proposed to accelerate the direct Fourier transform com-
putation, similar to the recently proposed methods such as using look-up table (LUT) or equal-phase-line (EPL). With LSQT, all the
image pixels are first classified into several groups where the Lloyd–Max quantization scheme is used to ensure the minimal classification
error. The representative value of each group is stored in a small-size LSQT in advance to reduce the computational load. The pixels in
the same group receive the same contribution, which is calculated only once for each group instead of for each pixel, resulting in the
reduction of computation because the number of groups is far smaller than the number of pixels. Finally, each image pixel is mapped
into the nearest group and its representative value is used to reconstruct the image. The experimental results show that the LSQT method
requires far smaller memory size than the LUT method and fewer multiplication operations than the LUT and EPL methods. Moreover,
the LSQT method can perform large-size reconstructions that achieve comparable or higher accuracy as compared to the EPL and grid-
ding methods when the appropriate parameters are given. The inherent parallel structure also makes the LSQT method easily adaptable
to a multiprocessor system.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In magnetic resonance imaging (MRI), the data are col-
lected in the k-space, which is related to the image of the
object through a Fourier transform relationship. Many
MRI pulse sequences are designed to acquire the k-space
samples on a Cartesian grid with data acquired on equally
spaced grid points. However, this scan pattern can be
rather slow in the phase encoding direction [1]. More
recently, non-Cartesian scanning in k-space, such as using
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spiral [2,3], rosette [4,5], and stochastic [6] trajectories,
has received increasing attention because of a more efficient
coverage of the k-space, a lower motion sensitivity, and a
higher scanning speed. For these scan patterns, image
reconstruction can no longer be accomplished directly with
a fast Fourier transform (FFT) algorithm. This problem of
reconstructing images from a set of nonuniformly sampled
data has drawn significant attention in the past few years.

Traditionally, the more commonly used methods are
those which benefit from the computational advantage of
the FFT, where nonuniformly sampled data are first resam-
pled onto a Cartesian grid, and then the FFT is applied to
reconstruct the image. The Kaiser–Bessel gridding method
is one of the most widely used gridding algorithms because
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the Kaiser–Bessel window function was shown to be a
desirable choice for the kernel function [7]. There are also
methods to choose an optimal parameter combination
when using the Kaiser–Bessel window function [8]. The
nonuniform FFT (NUFFT) algorithm is another way to
solve this problem as it was observed that the gridding
algorithm is mathematically equivalent to the type-1
NUFFT problem [9,10]. A related generalized FFT
(GFFT) [9] is also equivalent to a gridding algorithm with
a Gaussian kernel. Sha et al. proposed a least square
NUFFT (LS_NUFFT) method for spiral MRI image
reconstruction by minimizing the reconstruction approxi-
mation error in the least square sense [10]. The Kaiser–Bes-
sel gridding and NUFFT-based methods have a similar
framework, including similar steps of pre-compensation,
convolution, FFT, and rescaling. In actual implementation
of these techniques, sometimes the reconstructed image is
not as accurate as expected, because of the need to carefully
select many parameters to appropriate values. Otherwise,
they become the major source of degradation in image
reconstruction quality.

Alternatives to the above methods also exist. In particu-
lar, some researchers aim at a direct mapping from nonuni-
formly sampled data to grid points [11–15] or the image
pixels [16–19]. Rosenfeld and Walle et al. formulated this
problem of resampling nonuniformly sampled data onto
a Cartesian grid as solving a set of linear equations
[11,12]. The advantages of this kind of methods include
requiring neither the pre- nor the post-compensation steps,
and performing resampling onto a regular grid rather than
the oversampled grid. It is, however, sensitive to noise. This
is partly resolved by using regularization, estimation theory
[14], and truncated singular value decomposition (SVD)
[15]. They are iterative reconstruction methods using tech-
niques such as the conjugate gradient descent method.
Because the system matrix is large in size and dense, Kadah
et al. [18,19] proposed to use a simple transformation to
convert the system matrix into a sparse form that leads
to much smaller computational and storage efforts.

The direct Fourier transform method is the summation
of the inverse Fourier transform of the k-space data
weighted by a density compensation function (DCF)
[20,21] and has some advantages over the other methods
described above. First, it does not require convolution
and post-compensation, and therefore reduces the possibil-
ities of introducing reconstruction errors. Second, the
reconstructed image can be updated immediately following
the most recent information after each individual data
point is acquired. This would be important in applications
such as MR fluoroscopy. Unfortunately, the high compu-
tational demand makes it impractical compared with meth-
ods that use the FFT [7,10].

Two algorithms have been proposed to accelerate the
direct Fourier transform method recently, with the ultimate
objective that this can become a viable alternative to meth-
ods mentioned above in selected applications. They are the
look-up table (LUT) method [22] and the equal-phase-line
(EPL) method [23]. The LUT method saves computations
in the Fourier transform method by pre-computing some
of them and storing in LUTs. However, this method is only
efficient for small-size images due to the huge memory
required for storing a LUT. Moreover, though the remain-
ing computation is easy to parallelize, the memory readout
to obtain the weights from a table is not, which makes the
LUT method time-consuming especially when weights are
stored in a large-size table. If the size of the LUT can be
reduced so that it is feasible for larger-size images with only
a little quality loss, the LUT method can still be appealing.
Meanwhile, the EPL method aims to reduce computation
by grouping those coefficients associated with the same
phase. However, this method does not take into account
the actual distribution of phases for each data acquired
using non-Cartesian k-space trajectories, and may cause a
large quantization error and consequently significant
reconstruction quality loss.

In this paper, we propose a least squares quantization
table (LSQT) method to accelerate the direct Fourier trans-
form to reconstruct MR images acquired with non-Carte-
sian trajectory [24]. The basic idea is that because the
data in k-space contribute almost equally to various image
pixels if they produce roughly the same phase, we can
quantize the phase interval of the complex exponential
function using the Lloyd–Max quantization technique with
the quantized values for reconstruction. In order to reduce
the computational load in reconstruction, the representa-
tive values of each group can be calculated and stored in
a small-size table in advance. In Section 2, we explain the
principle of this LSQT method in further details. Imple-
mentations and experiments are then described in Section
3. This is followed by some discussions in Section 4 and
concluding remarks in Section 5.

2. The least squares quantization table method

The direct Fourier transform method to reconstruct a
2D image I of size N · N from k-space data sp with length
L is [10,23]:

I x; yð Þ ¼
XL

p¼1

spdp exp j2p xup þ yvp

� �� �
; ð1Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

; x; y ¼ ½�N=2 : N=2� 1� denote an image
pixel, and up; vp ¼ ½�1=2 : 1=2� is the sampling position in
k-space. dp is the DCF employed to compensate for non-
uniform sampling density and is relative to the sampling
positions. This is necessary for minimizing the reconstruc-
tion error due to uneven sampling of k-space. The contri-
bution of the pth data to the image space is therefore,

Ipðx; yÞ ¼ spdp expðj2pðxup þ yvpÞÞ: ð2Þ

The final reconstructed image is the sum of the contribu-
tions of all data.

It is clear that for a given k-space trajectory, the product
of complex exponential function and DCF, i.e.
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Tp(x,y) = dp exp (j2p(xup + yvp)), is independent of the k-
space data values, and therefore can be pre-computed.
Then, Eq. (1) can be written as

Iðx; yÞ ¼
XL

p¼1

spT pðx; yÞ: ð3Þ

Thus, Tps are essentially the weights that describe how
each k-space data point affects the entire image space. In
the LUT method, Tps are pre-calculated and stored in a
table with size of N2 · L, allowing the LUT method to per-
form the direct Fourier transform reconstruction effi-
ciently. When a data point arrives from the MR scanner,
the corresponding weight is loaded, multiplied by the data,
and distributed to each pixel of the entire image space.
Though Tps can be calculated and stored in a table off-line
to reduce the computation time, if the size of data and
image is large, the LUT method is still time-consuming
and impractical because it requires huge memory space to
load the table. As an example, consider reconstructing a
256 · 256 image from 10,000 sample points. Assume
2 bytes are needed for each entry in the LUT (since it con-
sists of complex values), we require 256 · 256 · 10,000 ·
2 � 1.22 GB memory!

It can be seen from Eq. (2) that for a given (up,vp ), if
two pixels (x1,y1) and (x2,y2) have the same phase such
that 2p(x1up + y1vp) = 2p(x2up + y2vp), the data sp has the
same contribution to the two pixel locations. Also, we
can define Cp(x,y) = xup + yvp, and ÆCp(x,y)æ where,

Cpðx; yÞ
� �

¼ Cpðx; yÞ � bCpðx; yÞc: ð4Þ

Note that ºxß denotes the largest integer smaller than or
equal to x. Thus, 0 6 ÆCp(x,y)æ < 1, and

exp 2pCpðx; yÞ
� �

¼ exp 2phCpðx; yÞi
� �

: ð5Þ

Using this notation, it is sufficient to check if certain pix-
els share the same ÆCpæ. If they do, the acquired raw data in
k-space will have the same contributions to these pixels.

As such, all the pixels can be classified into different
groups based on their ÆCpæ values, where each group is
labeled by a representative value. In computing Eq. (2)
for image reconstruction, pixels in the same group use
the same value for the phase. Because each pixel (x,y) cor-
responds to a ÆCpæ for a given (up,vp), the problem of clas-
sifying pixels to a few groups can be formulated as
quantizing their corresponding ÆCpæs into a few bins.

Consequently, Eq. (2) is calculated only once for each
group instead of for each pixel in the direct Fourier trans-
form and LUT method. If we have very fine quantization,
there will be little loss of accuracy but reduction of compu-
tational loads. However, in practice, the reduction is not
substantial because if we insist that the elements in a group
must be extremely close to the representative value, the
number of groups is comparable to the number of pixels
[23]. A straightforward alternative is to decrease the num-
ber of groups while suffering a loss of reconstruction accu-
racy. The tradeoff lies in the number of groups, where with
fewer groups each one now has a higher tolerance of differ-
ence among members in the group.

In the EPL method, each Cp is called one phase line
because the pixels that have the same phase lie in a straight
line described by equation xup + yvp = constant. Consider-
ing the periodic property of the complex exponential func-
tion, the EPL method classifies all the pixels into only M

phase lines where M� N2 by evenly dividing the interval
[0,1) of ÆCpæ into M sub-intervals in the main phase band,
and each sub-interval represents one phase line with a rep-
resentative value,

E ið Þ ¼ i� 1

M
; i ¼ 1; 2; . . . ;M : ð6Þ

We can see from Eq. (6) that when the number of groups
M is given, all the pixels are classified into the same set of
groups for any k-space data, and the representative values
of the groups are equidistant. Thus, the EPL method is essen-
tially using a uniform quantization to the phase. This is opti-
mal only when the sample is distributed uniformly. In other
words, the EPL method assumes that first, the distributions
of ÆCpæ in the interval [0, 1) of all k-space data are the same.
Second, the distribution of ÆCpæ of any one data (up,vp) is uni-
form in the interval [0,1). However, for reconstructing image
from data sampled by using non-Cartesian k-space trajecto-
ries, the distribution of ÆCpæ in the interval [0, 1) varies for dif-
ferent k-space data points. Furthermore, in most cases, it is
nonuniform for a given (up,vp) (please refer to Appendix A
for discussion in more detail), where the distribution may
be dense in some sub-regions of [0, 1) and sparse in other
sub-regions. Therefore, not taking into account the actual
distribution of ÆCpæ in the EPL method can lead to larger
quantization error and consequently reconstruction quality
loss, especially when the quantization bin size is not as fine.

In order to overcome the problems in the LUT and EPL
methods, we develop a method that can decrease the size of
the table to be feasible for a larger-size image reconstruc-
tion compared to the LUT method while suffering a smaller
loss of image quality compared to the EPL method. The
idea is to use fewer number of groups and decrease the
quantization error for ÆCpæ. We use the Lloyd–Max least
squares quantization algorithm to quantize them into only
M bins (M� N2), noting that it is optimal even when the
sample is distributed nonuniformly [25,26]. Thus, the group
boundaries are calculated by quantizing the interval [0,1)
into M bins in the least squares sense of quantization error.
The representative value of each group is the centroid of
the corresponding group, which is the optimal point to give
the lowest quality loss. This is given by

Qði; pÞ ¼ 1

N i

XNi

d¼1

hCpðxd ; ydÞi; i ¼ 1; 2; � � �M ; ð7Þ

where Ni is the number of ÆCpæs quantized into the ith bin,
and (xd,yd) are those pixels classified into this group. Com-
pared to Eq. (6), we can see that firstly, all the pixels are
classified into different sets of groups for any k-space data



Fig. 1. (a and b) The reconstructed images obtained using the direct
Fourier transform method from actual scan data and phantom data with
size 256 · 256, respectively.
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(up,vp). Secondly, the representative values within one
group are not equidistant because it takes into account
the actual distribution of ÆCpæ for the particular non-Carte-
sian trajectory.

Therefore, for the k-space data s with length L, we can
pre-compute a least squares quantization table (LSQT) Q
of size M · L. Each column of it stores the M representative
values for the corresponding k-space data, and each repre-
sentative value is a label for a group. This table maps each
of the image pixels for a given k-space position to a particular
group and representative value. Construction of the table
can be accomplished off-line and reused for the same k-space
trajectory, as it is independent of the object being imaged.
After loading the table, when a new k-space data arrives,
its contributions to all the groups can be calculated as

bpðiÞ ¼ spdp expðj2pQði; pÞÞ; i ¼ 1; 2; . . . ;M : ð8Þ

It should be noted that if we define a larger M, the quan-
tization error and reconstruction error will be smaller, but
the LSQT size and required memory will be larger. Con-
versely, a smaller M needs less memory but gives a larger
reconstruction error.

To complete the algorithm, we need to define a way to
map each pixel to the corresponding group. The way is to
search for an entry in the table whose representative value
is closest to the current ÆCpæ [26], such as by using a binary-
searching algorithm. Moreover, we can exploit symmetry
to reduce the searching. Suppose the pixel (x,y) is mapped
to the kth group, the contribution of the pth data to the pixel
(x,y) will be approximated by bp(k). Considering the sym-
metric and periodic properties of ÆCpæ, i.e. ÆCp(�x,�y)æ =
Æ�Cp(x,y)æ and also ÆCp(�x,y)æ = Æ�Cp(x,�y)æ, pixel
(�x,�y) should be classified into the (M � k)th group and
we can set the corresponding value bp(M � k) directly.
Therefore, only pixels where x P 0 need to undergo map-
ping [23].

The least squares quantization table-based reconstruc-
tion method can be summarized with the following steps:

(1) Load least squares quantization table Q.
(2) Load k-space data sp and density compensation func-

tion dp, and calculate the product of sp and dp.
(3) Calculate the contributions of the pth data to the

groups bp(i), where i = 1,2, . . . ,M.
(4) For each pixel (x,y), calculate ÆCpæ and search for its

entry k in Qði; pÞ, where i = 1,2, � � � ,M, using bin-
ary-searching algorithm.

(5) Distribute bp(k) to the pixel (x,y) and bp(M � k) to
the pixel (�x,�y).

(6) Go to step (4) for the next pixel with x P 0.
(7) Go to step (2) for the next k-space data.

3. Experimental results

Our experiments were performed with both the Shepp–
Logan mathematical phantom [27] and an actual scan
spiral data, which contain 13,392 complex data points.
We reconstructed an image with size 256 · 256 from the
actual scan data. Three different sizes of the Shepp–Logan
phantoms, 64 · 64, 128 · 128, and 256 · 256, are used in
our experiments. Spiral trajectory of the actual scan data
is used to generate k-space data from these three phantoms
following Eq. (16) in [13]. Thus, for the phantom, it has
three cases of image reconstruction: L > N · N, L � N · N,
and L < N · N. We experiment with different number of
quantization bins, including M = 16, 64, 256, and 1024.
The reconstructed 256 · 256 images using the direct Fou-
rier transform from the actual scan data and phantom data
are shown in Fig. 1a and b. We can see the substantial
swirling artifacts due to undersampling, as the number of
k-space data is only about 20% of the number of image
pixels.

3.1. Uniform and Lloyd–Max quantization

To illustrate why the Lloyd–Max quantization scheme
has a potential advantage over the uniform quantization
used in the EPL method, we first plot the probability density
functions of ÆCpæ for some sample points. The cases for
p = 745, i.e. (up = 5.439 · 10�6,vp = 1.980 · 10�6), p =
1900, i.e. (up = �3.572 · 10�2,vp = 1.768 · 10�1), and
p = 5972, i.e. (up = �8.824 · 10�3,vp = �5.998 · 10�3), are
shown in Fig. 2a–c, respectively. They are all nonuniformly
distributed, although to different extent. From (a), we can
see that the distribution of ÆC745æ is highly nonuniform,
because all the ÆC745æs are concentrated in two small regions,
namely 0 6 ÆC745æ 6 0.00094969 and 0.99905 6 ÆC745æ 6
0.99999. The probability density is zero in between these
two regions. In (b), the distribution of ÆC1900æ is closer to uni-
form, as the probability density function is almost a constant
in the entire interval [0, 1). In between these two more
extreme cases, the nonuniform distribution of ÆC5972æ, shown
in (c), is more common. In this case, the probability density
function is a constant in some sub-intervals, and a linear
function in some other sub-intervals, in agreement with the
discussion in Appendix A. Additionally, it should be noted
that the distribution of ÆCpæ is different for different k-space
sample point.



Fig. 2. (a–c) The probability density function of ÆC745æ, ÆC1900æ, and ÆC5972æ, respectively.
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Equipped with this knowledge, we further illustrate the
difference between uniform quantization and Lloyd–Max
least squares quantization algorithms using an actual scan
data. Consider the more extreme case of p = 745 discussed
above. Table 1 gives the representative values of 16 groups
of ÆC745æ obtained using two different quantization algo-
rithms. This table can be regarded as a codebook. In accor-
dance with Eq. (6), the representative values of the uniform
quantization algorithm are evenly distributed in the entire
interval [0,1), while those of the least squares quantization
algorithm are distributed in the two regions where the
original ÆC745æs locate. This is because the least squares
quantization algorithm takes into account the actual distri-
bution of the original signal. It should be noted that con-
sidering the periodic property of the complex exponential
function when performing quantization operation, the val-
ues that are smaller than the first representative value or
larger than the last representative value and closer to 1 will
be quantized to the first bin.
Table 1
The representative values of 16 groups of ÆC745æ using uniform quanti-
zation and Lloyd–Max quantization

i Uniform Least squares i Uniform Least squares

1 0 0.0000466 9 0.5 0.99922
2 0.0625 0.0001399 10 0.5625 0.99937
3 0.125 0.0002333 11 0.625 0.99948
4 0.1875 0.0003270 12 0.6875 0.99958
5 0.25 0.0004202 13 0.75 0.99967
6 0.3175 0.0005173 14 0.8125 0.99977
7 0.375 0.0006313 15 0.875 0.99986
8 0.4375 0.0007843 16 0.9375 0.99995
Consider an example where the original value of one
ÆC745æ is 0.00094969. It is quantized to the first bin with a
representative value of 0 in the uniform quantization algo-
rithm. The quantization error is then 0.00094969. The cor-
responding pixel is classified into the first group with
b745(1) = s745d745 according to Eq. (8). On the other hand,
in the least squares quantization algorithm, this ÆC745æ is
quantized to the eighth bin with the representative value
of 0.0007843. The quantization error in this case is only
j0.00094969 � 0.00078430j = 0.00016539. The correspond-
ing pixel is classified into the eighth group with
b745(8) = s745d745 exp (j2p · 0.0007843). Comparing the
two, the quantized ÆC745æ of least squares quantization
algorithm is closer to the original ÆC745æ, which means that
the least squares quantization algorithm gives a more accu-
rate quantization result, which will lead to better image
reconstruction quality. Furthermore, in uniform quantiza-
tion, all the 256 · 256 pixels for the 745th data are classified
into one group and are receiving the same contribution,
while they can be classified into as many as 16 groups using
least squares quantization algorithm. Thus, the approxima-
tion of the contribution using the least squares quantiza-
tion algorithm is more accurate than that using the
uniform quantization algorithm.

We can measure the l1 norm of the quantization error
using the formula:

E ¼
XN�N

d¼1

XL

p¼1

Cpðxd ; ydÞ
� �

� Cpðxd ; ydÞ
� �Q

���
��� ð9Þ

where hCpðxd ; ydÞi
Q denotes hCpðxd ; ydÞi after quantization.

This measurement can help us compare the efficacy of
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uniform quantization and least squares quantization. In our
experiments, for M = 16, 64, 256, and 1024, the quantiza-
tion errors E of 2562 · 13392 fractional parts for least
squares quantization algorithm are only 31.98%, 29.11%,
25.01%, and 21.28%, respectively, of that for uniform quan-
tization, again showing the advantage of using the former.
3.2. Reconstruction accuracy

The ‘‘ideal’’ images obtained with the direct Fourier
transform method were used as standards to compare the
LSQT method with the EPL and gridding methods. In
our work, an oversampling ratio of 1.5 and a kernel width
of 4 were chosen for gridding, and the shape parameter and
optimal sampled kernel were calculated using the method
proposed by Beatty et al. [8]. All the algorithms were imple-
mented in MATLAB and C++ on a personal computer
(Intel Pentium 4 2.4 GHz processor with 512 MB of
RAM). The absolute difference image, normalized root
mean square (nRMS) error and maximum absolute differ-
ence (MAD) between the ideal and reconstructed images
were used to evaluate the reconstruction performance.
The nRMS and MAD are defined as [16]:

nRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
x¼1

PN
y¼1 Iðx; yÞ � I rðx; yÞð Þ2PN

x¼1

PN
y¼1 Iðx; yÞð Þ2

vuut ð10Þ

and

MAD ¼
max

x;y
Iðx; yÞ � I rðx; yÞj j

255
; ð11Þ

where I(x,y) and Ir(x,y) are the ideal and reconstructed
images, respectively, scaled to 8 bits unsigned integers. It
is also possible to use either floating point or 16-bit integers
which are also common for medical images.

Fig. 3 compares the absolute difference images of recon-
struction with actual scan data using the EPL and LSQT
methods, where the first row is for the EPL method and
the second row is for the LSQT method. All difference
Fig. 3. The absolute difference images for reconstruction with actual scan data.
is for the EPL method, and the second row (e–h) is for the LSQT method. A
images were amplified 100 times and any value in the
amplified difference images greater than 255 will be dis-
played as white to improve contrast visibility. In this figure,
M = 16 for (a) and (e), 64 for (b) and (f), 256 for (c) and
(g), and 1024 for (d) and (h). In all four cases, when the
EPL method and LSQT method share the same M, the lat-
ter is seen to distribute the error more evenly and have a
lower peak gray level than the former. For both methods,
the number of pixels having large difference between the
ideal and reconstructed images decreases with increasing
M. This underscores the fact that the reconstruction error
can be reduced with a larger M. Similar conclusions can
also be drawn from Fig. 4, which shows the comparisons
using the Shepp–Logan phantom. The trends of the ampli-
fied difference images for the two methods and the four val-
ues of M also confirm that increasing M can reduce the
reconstruction error, and LSQT generally outperforms
EPL significantly for the same value of M.

Next, we compare the LSQT method and the gridding
method, using the parameters mentioned earlier in this sec-
tion. Fig. 5a and b shows the difference images magnified
1000 times obtained by the gridding method with actual
scan data and Shepp–Logan phantom, respectively. We
can see that the reconstruction errors mainly lie along the
outer regions of the image. In comparison, Fig. 5c and d
shows the difference images magnified 1000 times obtained
by the LSQT method (with M = 1024), again for the scan
data and phantom. Here, the reconstruction errors are seen
to distribute more evenly over the image, resulting in a
lower maximum error.

In addition to visual comparisons, we also measure the
reconstruction quality using nRMS and MAD. Table 2
shows the nRMS computed with the actual scan data using
the different methods when we vary the number of groups.
Table 3 is a similar table with MAD instead. Using either
metric, we can see that the LSQT method has similar
reconstruction quality when M = 1024 compared with
gridding using the parameters mentioned above, and is
superior to the EPL method when two methods take the
same value for M for all four cases. Moreover, comparing
The first row (a–d), where M equals to 16, 64, 256, and 1024, respectively,
ll difference images were amplified 100 times.



Fig. 4. The absolute difference images for reconstruction with Shepp–Logan phantom. The first row (a–d), where M equals to 16, 64, 256, and 1024,
respectively, is for the EPL method, and the second row (e–h) is for the LSQT method. All difference images were amplified 100 times.

Fig. 5. (a and b) The difference images amplified 1000 times obtained by using the gridding method with actual scan data and Shepp–Logan phantom,
respectively. (c and d) The difference images amplified 1000 times obtained by using the LSQT method with M = 1024 from actual scan data and Shepp–
Logan phantom, respectively.

Table 2
The nRMS of the various methods against the number of groups, M, using
actual scan data

M = 16 M = 64 M = 256 M = 1024

LSQT 0.06642 0.01671 0.00402 0.00094
EPL 0.11307 0.04672 0.02174 0.01061
Gridding 0.00126
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the columns in the two tables, when we increase M by a
factor of 4, both the nRMS and MAD decrease to less than
a quarter of the previous case. This trend is also true when
we experiment with the Shepp–Logan phantom. As dis-
cussed earlier, increasing M requires a larger memory
requirement. Because each element of a LSQT is a real
fractional part and can be represented as a 4 bytes float
type without a noticeable loss in accuracy, the required
memory for loading a table is roughly 4ML bytes, i.e.
0.82, 3.27, 13.08, and 52.31 MB for M = 16, 64, 256, and
Table 3
The MAD of the various methods against the number of groups, M, using
actual scan data

M = 16 M = 64 M = 256 M = 1024

LSQT 0.05323 0.01183 0.00291 0.00067
EPL 0.14144 0.10161 0.05120 0.01369
Gridding 0.00134
1024, respectively. This is compared to 6696 MB for the
LUT method because each element of a LUT is a complex
fractional part and requires twice the space to store com-
pared to LSQT. It is clear that reconstructing an image
with such a size using the LUT method is impractical.
Put another way, an 8 MB of memory that is required
for reconstructing a 32 · 32 image from 1024 data using
LUT in [22] is sufficient to reconstruct a 256 · 256 image
from 13,392 spiral trajectory data with M = 128 in our
experiments.

3.3. The reusability of LSQT

As we described above, the LSQT constructed for a
given trajectory can be reused for reconstructing different
images with the same size. This is because constructing
LSQT is only dependent on the k-space sampling positions
and image pixels positions. Moreover, another advantage
of LSQT method is that the LSQT constructed in the case
of L < N · N can be reused in the case of L � N · N and
L > N · N where L is fixed. Fig. 6a and b shows the nRMS
and MAD of LSQT method against the number of groups
for reconstructing different size of phantoms with different
LSQTs. Here, LSQT256 N64 and LSQT256 N128 mean
reconstructing a 64 · 64 or 128 · 128 phantom but with a
LSQT constructed for reconstructing a 256 · 256 phantom
from the same k-space data. LSQT64 N64 and LSQT128



Fig. 6. (a and b) The nRMS and MAD of LSQT method against the number of groups for reconstructing different size of phantoms with different LSQTs.
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N128 refer to the reconstruction of a 64 · 64 or 128 · 128
phantom with their own LSQTs. It can be seen that recon-
structing 64 · 64 and 128 · 128 phantoms with LSQT256
performs better than with their own LSQTs using both
nRMS and MAD as the metric. The reason is that each ele-
ment of LSQT256 is obtained from 256 · 256 ÆCpæs in the
interval [0, 1) while each element of LSQT64 and LSQT128
is obtained from 64 · 64 or 128 · 128 ÆCpæs in the interval
[0,1). Obviously, the representative values stored in
LSQT256 are more precise than those stored in LSQT64
and LSQT128 when ÆCpæs have similar distribution. This
advantage means the LSQT method can be reused not only
for reconstructing different images with the same size, but
for reconstructing different images of reduced size.

The selection of the number of groups affects the quan-
tization precision and the size of LSQT, and hence the
reconstruction accuracy and required memory. Therefore,
the selection of M is flexible in trading-off required memory
against reconstruction error in our method. For example, if
a high accuracy is desired, it is easy to implement by
increasing the number of groups. It can be suggested that
when L > N · N, M can take a small value while when
L < N · N, M should take a larger value to retain a sub-
stantial reduction in reconstruction error.
3.4. Computational complexity

When mapping the data sp to image I in Eq. (1), it requires
about 5

2
N 2L complex multiplications for the direct Fourier

transform method, with one real multiplication counted as
1/4 complex multiplication [23]. For the LUT method, there
are N2L complex multiplications. The EPL method requires
L 1

2
þ 3

2
Mþ 3

8
N 2

� �
and the LSQT method requires

L 1
2
þ 3

2
Mþ 1

4
N 2

� �
complex multiplications. When M� N2,

the required operations of complex multiplication in the
EPL and LSQT methods are approximately 3

8
N 2L and

1
4
N 2L, respectively, i.e. about 15 and 10% compared with

direct Fourier transform. It should also be pointed out that
the EPL and LSQT methods have computational complexity
of O(N2L) because we need to calculate Cp for each image
pixel and each sampling position. The gridding method how-
ever only requires 1
2
Lþ 36N 2 þ 9

4
N 2log2

3
2
N
� �

complex multi-
plications using FFT [23].

When realizing these methods, the total reconstruction
time includes three parts: calculating contribution for each
data (as in Eq. (8)), computing ÆCpæ for each data and
image pixel (as in Eq. (4)), and mapping pixels to the cor-
responding groups (which involves no multiplication in this
part). In our implementation, the direct Fourier transform
takes about 460 s, gridding method time is about 0.3 s and
the EPL and LSQT need about 151 and 211 s, respectively.
Most time is spent in mapping operations in the EPL and
LSQT methods. We did not compare the time for the
LUT method because the large-size table cannot be loaded
into the memory. In [22], where this method was proposed,
the reconstruction time for larger-size images were esti-
mated by extrapolation.

4. Discussion

LSQT has a fairly straightforward implementation. This
is somewhat simpler than gridding, which requires optimi-
zation of a few parameters. For example, the user needs to
choose certain specific parameters for reconstruction, such
as the kernel width or oversampling ratio [7,8,11]. To find
the optimal presampled kernel also requires solving a sec-
ond-order cone program (SOCP) [8]. Instead, in LSQT a
single parameter can be used for quality measure and com-
putational load control. The tradeoff for a better image
quality is a larger memory. Therefore, the LSQT method
can be customized for the particular application by select-
ing a predetermined number of groups that corresponds to
the desired required memory, or for some applications
where image quality is a lot more important than recon-
struction time. Additionally, in some applications where
the most recent information carried by each individual data
point needs to be presented, the LSQT method can update
the reconstructed image immediately after each individual
data point is acquired while the gridding method has to
perform an FFT for each reconstruction update.

At present, the LSQT method is more time-consuming
than the Kaiser–Bessel gridding method. However, there
are ways to improve the speed of LSQT with a sufficient



Fig. 7. The trapezoidal distributions of Cp.
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number of processing units. The reason is that table-based
methods are highly amenable to parallelization. Some
researchers have explored multiprocessor and dedicated
hardware systems for image reconstruction from nonuni-
formly sampled data [28–30]. For the LSQT method, bp(i)s
only need to be calculated M times for each data. There-
fore, it may be accelerated by using a more efficient search-
ing algorithm and a multiprocessor system.

Another point to note is that inhomogeneity effect has
not been considered in this paper. In the presence of field
inhomogeneity, the MRI signal and the image do not have
a Fourier transform relationship. It involves a complex
exponential function with irregular sampling in both
domains, and will cause more severe blurring and other
artifacts for non-Cartesian acquisitions than for Cartesian
acquisitions [16,31]. The LSQT method could be a poten-
tial solution to this problem by integrating the inhomoge-
neity term into the phase, while the quantization would
need to be recalculated for each slice. Additionally, if one
is willing to tolerate memory requirements on the order
of the LSQT method, the mappings can be pre-calculated
and the number of multiplications becomes O(ML), repre-
senting a significant advantage in reducing the computa-
tional loads.

5. Conclusion

In this paper, a LSQT-based method is proposed to
improve the direct reconstruction from nonuniformly sam-
pled MRI data. It requires far less memory than the LUT
method when reconstructing images of the same size. Com-
pared with the gridding and EPL methods, the LSQT
method can provide reconstructions that are comparable
to or more accurate when the appropriate parameter is
chosen. In addition, it requires fewer complex multiplica-
tions than the LUT and EPL methods. These advantages
make this a potential alternative to other image reconstruc-
tion methods for nonuniform MRI data.
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Appendix A

Here, we discuss the distribution of ÆCpæ = Æxup + yvpæ
for a given (up,vp), where �1

2
6 up 6

1
2

and �1
2
6 vp 6

1
2
.

The distributions of x and y are uniform in the interval
½� N

2
; N

2
�. Therefore, Cp is a weighted sum of two uniform

distributions with zero mean. Consequently, the probabil-
ity density function of Cp is trapezoidal in shape [32]. With-
out loss of generality, let us assume jupj > jvpj, and let

g ¼ N
2

up

�� ��þ vp

�� ��� �
and h ¼ N

2
up

�� ��� vp

�� ��� �
; ð12Þ

where it is clear that g P h. Then, the probability density
function of Cp is

p Cp

� �
¼

gþCp

g2�h2 : �g 6 Cp < �h
1

gþh : �h 6 Cp < h
g�Cp

g2�h2 : h 6 Cp < g

0 : otherwise:

8>>>>><
>>>>>:

ð13Þ

This is shown in Fig. 7.
We can form the probability density function of p(ÆCpæ)

from the equation above by ‘‘folding’’ all the regions to
[0,1). While we can form analytical expressions through
tedious calculations, it is sufficient for our purpose here
to see that in general, p(ÆCpæ) will not be uniformly distrib-
uted. There are exceptions, such as when g = h, which
implies that jvpj = 0. However, in a general setting, the
two ends of the trapezoidal do not overlap exactly during
folding, and the resulting nonuniform distribution necessi-
tates the use of Lloyd–Max least squares quantization
rather than uniform quantization.
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